Late-time evolution of nonlinear gravitational collapse

Abstract
We study numerically the fully nonlinear gravitational collapse of a self-gravitating, minimally-coupled, massless scalar field in spherical symmetry. Our numerical code is based on double-null coordinates and on free evolution of the metric functions: The evolution equations are integrated numerically, whereas the constraint equations are only monitored. The numerical code is stable (unlike recent claims) and second-order accurate. We use this code to study the late-time asymptotic behavior at fixed $r$ (outside the black hole), along the event horizon, and along future null infinity. In all three asymptotic regions we find that, after the decay of the quasi-normal modes, the perturbations are dominated by inverse power-law tails. The corresponding power indices agree with the integer values predicted by linearized theory. We also study the case of a charged black hole nonlinearly perturbed by a (neutral) self-gravitating scalar field, and find the same type of behavior---i.e., quasi-normal modes followed by inverse power-law tails, with the same indices as in the uncharged case.Comment: 14 pages, standard LaTeX, 18 Encapsulated PostScript figures. A new convergence test and a determination of QN ringing were added, in addition to correction of typos and update of reference