The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period

Abstract
The isolation and characterization of single gene mutations affecting the circadian biological clocks of several organisms has left little doubt that circadian rhythms can be subjected to classical genetical analysis. Many of these mutations occur at the same few genetic loci (frequency (frq) in the fungus Neurospora, and period (per) in fruit fly Drosophila); these loci represent the best studied clock-affecting genes known. Mutant strains are usually affected in more than one basic clock property, suggesting an inter-relatedness at the molecular level among these basic properties that would not have been predicted a priori. The extensive background information available concerning the frq locus provides a basis for the molecular dissection of the Neurospora circadian clock--the most minimal circadian system thus far described. We report here the cloning and analysis of the frq locus and show it to be larger and more complex than would have been predicted from the available genetic data. Complete rescue of all of the pleiotropic mutant phenotypes of the recessive frq allele requires transformation with a 7.7-kilobase (kb) region of DNA encoding at least two transcripts. Sequence analysis of this region has allowed the identification of a common element between frq and per which, given the background similarities in their classical genetic characteristics, suggests the possibility of a common element in the clock mechanisms of these two organisms.