Proteasomal Degradation of Rpn4 in Saccharomyces cerevisiae Is Critical for Cell Viability Under Stressed Conditions
- 1 February 2010
- journal article
- Published by Oxford University Press (OUP) in Genetics
- Vol. 184 (2), 335-342
- https://doi.org/10.1534/genetics.109.112227
Abstract
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback loop in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. In addition to the proteasome genes, Rpn4 regulates numerous other genes involved in a wide range of cellular pathways. Therefore, the Rpn4–proteasome negative feedback circuit not only controls proteasome abundance, but also gauges the expression of other Rpn4 target genes. Our previous work has shown that Rpn4-induced gene expression is critical for cell viability under stressed conditions. Here we investigate whether proteasomal degradation of Rpn4 is also important for cell survival in response to stress. To this end, we generate a stabilized Rpn4 mutant (Rpn4*) that retains its transcription activity. We find that expression of Rpn4* severely reduces cell viability in response to various genotoxic and proteotoxic agents. This detrimental effect can be eliminated by a point mutation that abolishes the transcription activity of Rpn4*, suggesting that overexpression of some Rpn4 target genes weakens the cell9s ability to cope with stress. Moreover, we demonstrate that inhibition of Rpn4 degradation causes synthetic growth defects when combined with proteasome impairment resulting from mutation of a proteasome gene or accumulation of misfolded endoplasmic reticulum membrane proteins. Rpn4 thus represents an important stress-responsive mediator whose degradation as well as availability are critical for cell survival under stressed conditions.Keywords
This publication has 37 references indexed in Scilit:
- Analysis of Quality Control Substrates in Distinct Cellular Compartments Reveals a Unique Role for Rpn4p in Tolerating Misfolded Membrane ProteinsMolecular Biology of the Cell, 2009
- Disruption of Rpn4-Induced Proteasome Expression in Saccharomyces cerevisiae Reduces Cell Viability Under Stressed ConditionsGenetics, 2008
- Genetic and Biochemical Analysis of Yeast and Human Cap Trimethylguanosine SynthaseJournal of Biological Chemistry, 2008
- Structure and properties of transcriptional networks driving selenite stress response in yeastsBMC Genomics, 2008
- Genome-Wide Analysis Identifies MYND-Domain Protein Mub1 as an Essential Factor for Rpn4 UbiquitylationMolecular and Cellular Biology, 2008
- Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cellsBreast Cancer Research and Treatment, 2007
- Identification of the Preferential Ubiquitination Site and Ubiquitin-dependent Degradation Signal of Rpn4Published by Elsevier ,2006
- Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuitBiochemical and Biophysical Research Communications, 2004
- Proteasomal Degradation of RPN4 via Two Distinct Mechanisms, Ubiquitin-dependent and -independentJournal of Biological Chemistry, 2004
- Inhibition of Proteasome Activity Induces Concerted Expression of Proteasome Genes and de Novo Formation of Mammalian ProteasomesJournal of Biological Chemistry, 2003