Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance.

Abstract
In a variety of plant species, the development of necrotic lesions in response to pathogen infection leads to induction of generalized disease resistance in uninfected tissues. A well-studied example of this "immunity" reaction is systemic acquired resistance (SAR) in tobacco. SAR is characterized by the development of a disease-resistant state in plants that have reacted hypersensitively to previous infection by tobacco mosaic virus. Here, we show that the onset of SAR correlates with the coordinate induction of nine classes of mRNAs. Salicylic acid, a candidate for the endogenous signal that activates the resistant state, induces expression of the same "SAR genes." A novel synthetic immunization compound, methyl-2,6-dichloroisonicotinic acid, also induces both resistance and SAR gene expression. These observations are consistent with the hypothesis that induced resistance results at least partially from coordinate expression of these SAR genes. A model is presented that ties pathogen-induced necrosis to the biosynthesis of salicylic acid and the induction of SAR.