Gaussian reference fluid and interpretation of quantum geometrodynamics

Abstract
The Wheeler-DeWitt equation of vacuum geometrodynamics is turned into a Schrödinger equation by imposing the normal Gaussian coordinate conditions with Lagrange multipliers and then restoring the coordinate invariance of the action by parametrization. This procedure corresponds to coupling the gravitational field to a reference fluid. The source appearing in the Einstein law of gravitation has the structure of a heat-conducting dust. When one imposes only the Gaussian time condition but not the Gaussian frame conditions, the heat flow vanishes and the dust becomes incoherent. The canonical description of the fluid uses the Gaussian coordinates and their conjugate momenta as the fluid variables. The energy density and the momentum density of the fluid turn out to be homogeneous linear functions of such momenta. This feature guarantees that the Dirac constraint quantization of the gravitational field coupled to the Gaussian reference fluid leads to a functional Schrödinger equation in Gaussian time. Such an equation possesses the standard positive-definite conserved norm.