Nanostructural study of sol-gel-derived zirconium oxides

Abstract
Two sol-gel derived zirconia powders were prepared at pH = 0.5 and pH = 5.5. They were investigated as a function of temperature using mainly perturbed angular correlation spectroscopy. The aim was to elucidate the relationship between the nanoscopic configurations around Zr4+ ions and the morphology and structure of the powders. The highly porous material resulting from the solution at higher pH could be described mainly by defective and disordered, very hydrolyzed tetragonal arrays. As temperature increased, the amount of these arrays decreased while they became increasingly asymmetric, thus suggesting their superficial localization. The easy removal of hydroxyls led to the early appearance of the monoclinic phase. The gel obtained from the precursor at pH = 0.5 was entirely described by configurations still involving organic residues. After their calcination, the powder underwent a well-defined two-step hydroxyl removal thermal process leading to the crystallization of the tetragonal and the monoclinic phases. The thermal stability of the metastable tetragonal phase in the investigated powders seems to be controlled by their different capability to absorb oxygen.