Asymmetric ATP Binding and Hydrolysis Activity of the Thermus aquaticus MutS Dimer Is Key to Modulation of Its Interactions with Mismatched DNA
- 25 September 2004
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 43 (41), 13115-13128
- https://doi.org/10.1021/bi049010t
Abstract
Prokaryotic MutS and eukaryotic Msh proteins recognize base pair mismatches and insertions or deletions in DNA and initiate mismatch repair. These proteins function as dimers (and perhaps higher order oligomers) and possess an ATPase activity that is essential for DNA repair. Previous studies of Escherichia coli MutS and eukaryotic Msh2−Msh6 proteins have revealed asymmetry within the dimer with respect to both DNA binding and ATPase activities. We have found the Thermus aquaticus MutS protein amenable to detailed investigation of the nature and role of this asymmetry. Here, we show that (a) in a MutS dimer one subunit (S1) binds nucleotide with high affinity and the other (S2) with 10-fold weaker affinity, (b) S1 hydrolyzes ATP rapidly while S2 hydrolyzes ATP at a 30−50-fold slower rate, (c) mismatched DNA binding to MutS inhibits ATP hydrolysis at S1 but slow hydrolysis continues at S2, and (d) interaction between mismatched DNA and MutS is weakened when both subunits are occupied by ATP but remains stable when S1 is occupied by ATP and S2 by ADP. These results reveal key MutS species in the ATPase pathway; S1ADP−S2ATP is formed preferentially in the absence of DNA or in the presence of fully matched DNA, while S1ATP−S2ATP and S1ATP−S2ADP are formed preferentially in the presence of mismatched DNA. These MutS species exhibit differences in interaction with mismatched DNA that are likely important for the mechanism of MutS action in DNA repair.Keywords
This publication has 50 references indexed in Scilit:
- Mismatch Recognition-Coupled Stabilization of Msh2-Msh6 in an ATP-Bound State at the Initiation of DNA RepairBiochemistry, 2003
- Differential and Simultaneous Adenosine Di- and Triphosphate Binding by MutSJournal of Biological Chemistry, 2003
- Crystal Structure and Biochemical Analysis of the MutS·ADP·Beryllium Fluoride Complex Suggests a Conserved Mechanism for ATP Interactions in Mismatch RepairJournal of Biological Chemistry, 2003
- Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structuresCurrent Opinion in Structural Biology, 2003
- The alternating ATPase domains of MutS control DNA mismatch repairThe EMBO Journal, 2003
- Dominant Saccharomyces cerevisiae msh6 Mutations Cause Increased Mispair Binding and Decreased Dissociation from Mispairs by Msh2-Msh6 in the Presence of ATPPublished by Elsevier ,2002
- Evidence for sequential action of two ATPase active sites in yeast Msh2–Msh6DNA Repair, 2002
- Direct observation of three conformations of MutS protein regulated by adenine nucleotidesJournal of Molecular Biology, 2001
- Composite Active Site of an ABC ATPaseMolecular Cell, 2001
- Mismatch Recognition and DNA-dependent Stimulation of the ATPase Activity of hMutSα Is Abolished by a Single Mutation in the hMSH6 SubunitPublished by Elsevier ,2000