Abstract
Autoregressive (AR) techniques are investigated by developing mean and maximum frequency estimators suitable for use in Doppler color flow mapping systems, where they are most needed. The estimators are based on low-order (for computational efficiency) AR models applied to complex signals whose real and imaginary parts are the in-phase and quadrature components of the analytical Doppler signal, respectively. A large number of simulated data sequences generated by a sinusoidal computer model and having different number of samples, spectral shapes, bandwidths, and signal-to-noise ratios are used to examine the performance (bias and variance) of the estimators in a systematic manner. Comparisons are made with the established autocorrelation technique, whose output is shown to be identical to one of the AR mean frequency estimators described.<>