Genetically Engineered Bacteria: Electrochemical Sensing Systems for Antimonite and Arsenite

Abstract
A bacterial sensing system that responds selectively to antimonite and arsenite has been investigated. The bacteria used in these studies have been genetically engineered to produce the enzyme beta-galactosidase in response to these ions. This is accomplished by using a plasmid that incorporates the gene for beta-galactosidase (reporter gene) under the control of the promoter of the ars operon. This plasmid also encodes for the ArsR protein, a regulatory protein of the ars operon, which, in the absence of antimonite or arsenite, restricts the expression of beta-galactosidase. In the presence of antimonite or arsenite the ArsR protein is released from the operator/ promoter region of the ars operon and beta-galactosidase is expressed. The activity of this enzyme was monitored electrochemically using p-aminophenyl beta-D-galactopyranoside as the substrate. The bacterial sensing system responds selectively to arsenite and antimonite (and to a lesser extent arsenate) and shows no significant response to phosphate, sulfate, nitrate, and carbonate.