Observation-Based Lane-Vehicle Assignment Hierarchy: Microscopic Simulation on Urban Street Network

Abstract
A lane-assignment model in a vehicle-based microscopic simulation system describes a vehicle’s position during its journey on an urban street network. In other words, it is used to estimate an individual vehicle’s location, speed, routing plan, lane-choice plan, lane-changing plan, and car-following plan from its entrance to a street network until the end of the trip. From the authors’ observations and study of lanechoice and lane-changing behavior, it is concluded that a vehicle is assigned to a lane in a logical manner depending on the relationship between its route-planned motivation and traffic conditions in the current lane and other lanes. A lane-assignment model consists of three components: lane choice, car following, and lane changing. The lane-changing component is composed of three submodels—a decision model, a lane-changing condition model, and a lane-changing maneuver model. Rules are discussed for lane-choice and lane-changing modeling based on videotaped observations over four-lane urban streets. Then a heuristic structure of a lane-vehicle-assignment model is proposed, which exposes the inherent relationship between vehicle-based travel behavior and lane-vehicle assignment on an urban street network. With the addition of a lane-assignment model derived from observed data, a simulation may be developed to correctly represent travel behavior and dynamic traffic assignment at the lane level and provide a more effective tool for design and evaluation of the performance of strategies for traffic control, traveler information, and congestion alleviation.

This publication has 3 references indexed in Scilit: