Systemically Expressed Soluble Tie2 Inhibits Intraocular Neovascularization

Abstract
Retinal and choroidal neovascularization are the most frequent causes of severe and progressive vision loss. Studies have demonstrated that Tie2, an endothelial-specific receptor tyrosine kinase, plays a key role in angiogenesis. In this study, we determined whether adenovirus-mediated gene delivery of extracellular domain of the Tie2 receptor (ExTek) could inhibit experimental retinal and choroidal neovascularization. Immunofluorescence histochemistry with a monoclonal antibody to human Tie2 showed that Tie2 expression is prominent around and within the base of newly formed blood vessels of retinal and choroidal neovascular lesions. A single intramuscular injection of adenovirus expressing ExTek genes achieved plasma levels of ExTek exceeding 500 μg/ml in mice for 10 days (in neonates) and 7 days (in adults). This treatment inhibited retinal neovascularization by 47% (p < 0.05) in a murine model of ischemia-induced retinopathy. The same treatment reduced the incidence and extent of sodium fluorescein leakage from choroidal neovascular lesions by 52% (p < 0.05) and 36% (p < 0.01), respectively, in a laser-induced murine choroidal neovascularization model. The same mice showed a 45% (p < 0.001) reduction of integrated area of the choroidal neovascularization. These findings indicate that Tie2 signaling is a common component of the angiogenic pathway in both retinal and choroidal neovascularization, providing a potentially useful target in the treatment of intraocular neovascular diseases.

This publication has 41 references indexed in Scilit: