Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids
Open Access
- 22 December 2006
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 143 (2), 849-865
- https://doi.org/10.1104/pp.106.090662
Abstract
Phloem-feeding pests cause extensive crop damage throughout the world, yet little is understood about how plants perceive and defend themselves from these threats. The silverleaf whitefly (SLWF; Bemisia tabaci type B) is a good model for studying phloem-feeding insect-plant interactions, as SLWF nymphs cause little wounding and have a long, continuous interaction with the plant. Using the Affymetrix ATH1 GeneChip to monitor the Arabidopsis (Arabidopsis thaliana) transcriptome, 700 transcripts were found to be up-regulated and 556 down-regulated by SLWF nymphs. Closer examination of the regulation of secondary metabolite (glucosinolate) and defense pathway genes after SLWF-instar feeding shows that responses were qualitatively and quantitatively different from chewing insects and aphids. In addition to the RNA profile distinctions, analysis of SLWF performance on wild-type and phytoalexin-deficient4 (pad4) mutants suggests aphid and SLWF interactions with Arabidopsis were distinct. While pad4-1 mutants were more susceptible to aphids, SLWF development on pad4-1 and wild-type plants was similar. Furthermore, although jasmonic acid genes were repressed and salicylic acid-regulated genes were induced after SLWF feeding, cytological staining of SLWF-infested tissue showed that pathogen defenses, such as localized cell death and hydrogen peroxide accumulation, were not observed. Like aphid and fungal pathogens, callose synthase gene RNAs accumulated and callose deposition was observed in SLWF-infested tissue. These results provide a more comprehensive understanding of phloem-feeding insect-plant interactions and distinguish SLWF global responses.Keywords
This publication has 79 references indexed in Scilit:
- Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid DefensesPlant Physiology, 2006
- Growth of the plant cell wallNature Reviews Molecular Cell Biology, 2005
- Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertilityPlant Molecular Biology, 2005
- REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal TransductionAnnual Review of Plant Biology, 2004
- The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and communityNucleic Acids Research, 2003
- Inducible indirect defence of plants: from mechanisms to ecological functionsBasic and Applied Ecology, 2003
- Expression Profile Analysis of the Low-Oxygen Response in Arabidopsis Root Cultures[W]Plant Cell, 2002
- Plant pathogens and integrated defence responses to infectionNature, 2001
- Significance analysis of microarrays applied to the ionizing radiation responseProceedings of the National Academy of Sciences, 2001
- Salicylic Acid and Disease Resistance in PlantsCritical Reviews in Plant Sciences, 1999