Glucose injections into the dorsal hippocampus or dorsolateral striatum of rats prior to T-maze training: Modulation of learning rates and strategy selection
- 18 July 2005
- journal article
- Published by Cold Spring Harbor Laboratory in Learning & Memory
- Vol. 12 (4), 367-374
- https://doi.org/10.1101/lm.88205
Abstract
The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial (Pcrit) administered after rats achieved criterion (nine of 10 correct choices) varied by group. All groups predominately exhibited a response strategy on a probe trial administered after overtraining, i.e., after 90 trials. In experiment 1, rats that received intrahippocampal glucose injections showed enhanced acquisition of the T-maze and showed increased use of response solutions at Pcrit compared with that of unimplanted and artificial cerebral spinal fluid (aCSF)-treated groups. These findings suggest that glucose enhanced hippocampal functions to accelerate the rate of learning and the early adoption of a response strategy. In experiment 2, rats that received intrastriatal glucose injections exhibited place solutions early in training and reached criterion more slowly than did aCSF controls, with learning rates comparable to those of unoperated and operated-uninjected controls. Relative to unoperated, operated-uninjected and glucose-injected rats, rats that received intrastriatal aCSF injections showed enhanced acquisition of the T-maze and increased use of response solutions at Pcrit. The unexpected enhanced acquisition seen after striatal aCSF injections suggests at least two possible interpretations: (1) aCSF impaired striatal function, thereby releasing competition with the hippocampus and ceding control over learning to the hippocampus during early training trials; and (2) aCSF enhanced striatal functioning to facilitate striatal-sensitive learning. With either interpretation, the results indicate that intrastriatal glucose injections compensated for the aCSF-induced effect. Finally, enhanced acquisition regardless of treatment was accompanied by rapid adoption of a response solution for the T-maze.Keywords
This publication has 94 references indexed in Scilit:
- How do memory systems interact? Evidence from human classification learningNeurobiology of Learning and Memory, 2004
- Post‐training reversible inactivation of hippocampus reveals interference between memory systemsHippocampus, 2002
- Epinephrine Fails to Enhance Performance of Food-Deprived Rats on a Delayed Spontaneous Alternation TaskNeurobiology of Learning and Memory, 2000
- Shuttle-Box Avoidance Learning in Mice: Improvement by Glucose Combined with Stimulant DrugsNeurobiology of Learning and Memory, 2000
- Intra-septal infusions of glucose potentiate inhibitory avoidance deficits when co-infused with the GABA agonist muscimolBrain Research, 1997
- A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum.Behavioral Neuroscience, 1993
- Improvement of memory for an operant response by post-training glucose in miceBehavioural Brain Research, 1988
- Caudate nucleus and memory for egocentric localizationBehavioral and Neural Biology, 1988
- Memory improvement by glucose, fructose, and two glucose analogs: A possible effect on peripheral glucose transportBehavioral and Neural Biology, 1987
- Glucose modulation of memory storage processingBehavioral and Neural Biology, 1986