Abstract
In the eggs ofPimpla turionellae, which are characterized by a long germ anlage (“long-germ egg” type), the cleavage nuclei primarily populate the anterior part and only later appear in the posterior of the egg lumen during the intravitelline cleavage. Gastrulation and segmentation also start within this anterior region. Time-lapse motion pictures served to observe and to check quantitatively even slow movements during cleavage and blastogenesis. In motion diagrams made by means of microkymographic technics the flow within the ooplasm along the longer axis of the egg has been timed. Shortly before the first cleavage in thestrictly unfertilized male eggs a short-time“unipolar flow” sets in from a primary initial region at 90% of their length. Thus a pillar of “central plasm” between both of the poles becomes shifted towards the posterior, while its outer coating layer of “marginal-plasm” is displaced forwards by the same distance. In eggs from fertilized females two successive flows of the same “unipolar” type have been observed. At the end of the third cleavage the energids, heretofore loosely grouped together, become distributed within the central plasm to form a “nuclear column”. At the same time a fluently pulsatory “bipolar flow” sets in, within asecondary initial region at 80% of the egg length. Comparable to two mirror-image fountains, parts of the central plasm are carried towards the front pole and to the rear pole of the egg, respectively, while the marginal plasm, together with the oolemma, flows in opposite directions at times. With each pulsation the moving areas of the bipolar flow are shifted more and more towards the egg poles. The occurrence of bipolar flow pulsations, amounting to five, is correlated with the nuclear divisions in a still unknown way. In the rhythm of the bipolar flow, the energids become dispersed within the central plasm with a certain spatial lagging. After the bipolar flow has come to a halt, four further cleavages are indicated by faint local pulsations of the ooplasm. The cleavage nuclei move to the egg surface and pole cells become separatedtied off During blastoderm formation another four faint pulsations are observed, especially within the central ooplasm, all of them clearly synchronized with superficial cleavages. Occurring in mitotic waves, these cleavages indicate a third initial region, with the individual position varying between 10 and 28% of the egg length. Furthermore the technics of time-lapse motion pictures permit a local and temporal determination of extravitelline pole space formation, of a ring-shaped contracted region of slightly thickening periplasm within the secondary initial region, and the dislocation of the oosome towards the egg surface, which results from the activity of the posterior fountain during the phase of bipolar flow. Invagination and segmentation of the embryo become distinct within the secondary initial region, thus identifying this region as a differentiation centre. The correlation of plasm flow and nuclear divisions is discussed as well as the correlation of the initial regions to the different patterns of egg architecture in the longgerm egg type. The correlation between bipolar pulsations and the development of the metameric pattern including the function of the oosomal region is also discussed. The ooplasmic movements as known from egg types other thanPimpla are compared to the above observations.

This publication has 24 references indexed in Scilit: