A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage
Open Access
- 30 March 1999
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 96 (7), 3745-3750
- https://doi.org/10.1073/pnas.96.7.3745
Abstract
Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. Much of our current understanding of checkpoints comes from genetic studies conducted in yeast. In the fission yeast Schizosaccharomyces pombe (Sp), SpRad3 is an essential component of both the DNA damage and DNA replication checkpoints. The SpChk1 and SpCds1 protein kinases function downstream of SpRad3. SpChk1 is an effector of the DNA damage checkpoint and, in the absence of SpCds1, serves an essential function in the DNA replication checkpoint. SpCds1 functions in the DNA replication checkpoint and in the S phase DNA damage checkpoint. Human homologs of both SpRad3 and SpChk1 but not SpCds1 have been identified. Here we report the identification of a human cDNA encoding a protein (designated HuCds1) that shares sequence, structural, and functional similarity to SpCds1. HuCds1 was modified by phosphorylation and activated in response to ionizing radiation. It was also modified in response to hydroxyurea treatment. Functional ATM protein was required for HuCds1 modification after ionizing radiation but not after hydroxyurea treatment. Like its fission yeast counterpart, human Cds1 phosphorylated Cdc25C to promote the binding of 14-3-3 proteins. These findings suggest that the checkpoint function of HuCds1 is conserved in yeast and mammals.Keywords
This publication has 60 references indexed in Scilit:
- Recombinant ATM protein complements the cellular A-T phenotypeOncogene, 1997
- Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways.Genes & Development, 1996
- Molecular Interaction Between the Strep-tag Affinity Peptide and its Cognate Target, StreptavidinJournal of Molecular Biology, 1996
- Regulation of RAD53 by the ATM -Like Kinases MEC1 and TEL1 in Yeast Cell Cycle Checkpoint PathwaysScience, 1996
- A kinase from fission yeast responsible for blocking mitosis in S phaseNature, 1995
- SH2 and SH3 domains as molecular adhesives: the interactions of Crk and AblTrends in Biochemical Sciences, 1994
- Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair.Genes & Development, 1994
- DUN1 encodes a protein kinase that controls the DNA damage response in yeastCell, 1993
- Mechanical basis of meiotic metaphase arrestNature, 1993
- Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiaeCell, 1991