Abstract
The mean flow structure upstream, around, and in a turbulent junction or horseshoe vortex is reported for an incompressible, subsonic flow. This fully documented, unified, comprehensive, and self-consistent data base is offered as a benchmark or standard case for assessing the predictive capabilities of computational codes developed to predict this kind of complex flow. Part I of these papers defines the total flow being documented. The upstream and surrounding three-dimensional turbulent boundary layer-like flow away from separation has been documented with mean velocity field and turbulent kinetic energy field measurements made with hot film anemometry, and local wall shear stress measurements. Data are provided for an initial condition plane well upstream of the junction vortex flow to initiate a boundary layer calculation, and freestream or edge velocity, as well as floor static pressure, are reported to proceed with the solution. Part II of these papers covers the flow through separation and within the junction vortex flow.