Abstract
This paper introduces new mappings of QPSK symbols, viewed as a multi-dimensional hypercube, to improve the performance of bit-interleaved coded modulation with iterative decoding (BICM-ID). By evaluating the upper bound of the bit error rate performance of BICM-ID, a condition to find the best mapping of a hypercube constellation in terms of the asymptotic performance under different channel models is established. A general and simple algorithm to construct the best mapping of a hypercube is then proposed. Analytical and simulation results show that the use of the proposed mappings together with very simple convolutional codes can offer significant coding gains over the conventional BICM-ID systems for all the channel models considered. Such coding gains are achieved without bandwidth or power expansion and with a very small increase in the system complexity.