An experimental study of standing waves

Abstract
The experiments here described were designed to test experimentally some conclusions about free standing waves recently reached analytically by Penney & Price. A close approximation to free oscillations was produced in a tank by wave makers operating with small amplitude and at frequencies where great amplification occurred, owing to resonance. The amplitude-frequency curve proved to consist of two non-intersecting branches, a result which can be explained theoretically. A striking prediction made by Penney & Price was that when the height of the crests of standing waves reaches about 0·15 wave-length they will become pointed, in the form of a 90° ridge. Higher waves were expected to be unstable because the downward acceleration of the free surface near the crest would exceed that of gravity. The experimental conditions necessary for producing a crest in the form of an angled ridge were found and the wave photographed in this condition. Good agreement was found with the calculated form of the profile of the highest wave, which had an angle very near to 90°. The predicted instability for two-dimensional waves was found to begin at the moment the crest became a sharp ridge. It rapidly assumed a three-dimensional character which was revealed by two photographic techniques. Even when the amplitude of oscillation of the wave makers was only 0·85°, violent types of instability developed which produced effects that are here recorded.