Ice in the troposphere affects a variety of processes, including the formation of precipitation, and cloud lifetime, albedo, dynamics, and electrification. A lack of understanding of the ways in which ice is created and multiplied hampers progress in understanding all of these processes. We survey the state of knowledge, starting with homogeneous nucleation, where current formulations for freezing from both pure water and solutions have considerable predictive power. However, debate still exists on the underlying mechanisms of nucleation. Using the concepts and framework that homogeneous nucleation provides, heterogeneous nucleation, where neither a commonly agreed upon theory nor even standard measurement technique exists, is considered. Investigators have established the ice-nucleating characteristics of broad classes of substances, such as mineral dust and soot, which are important ice nuclei in the atmosphere, but a coherent theory of why these substances act as they do has yet to emerge. All... Abstract Ice in the troposphere affects a variety of processes, including the formation of precipitation, and cloud lifetime, albedo, dynamics, and electrification. A lack of understanding of the ways in which ice is created and multiplied hampers progress in understanding all of these processes. We survey the state of knowledge, starting with homogeneous nucleation, where current formulations for freezing from both pure water and solutions have considerable predictive power. However, debate still exists on the underlying mechanisms of nucleation. Using the concepts and framework that homogeneous nucleation provides, heterogeneous nucleation, where neither a commonly agreed upon theory nor even standard measurement technique exists, is considered. Investigators have established the ice-nucleating characteristics of broad classes of substances, such as mineral dust and soot, which are important ice nuclei in the atmosphere, but a coherent theory of why these substances act as they do has yet to emerge. All...