Nonresonant Raman imaging of protein distribution in single human cells
Open Access
- 27 September 2002
- journal article
- research article
- Published by Wiley in Biopolymers
- Vol. 72 (1), 1-9
- https://doi.org/10.1002/bip.10246
Abstract
A confocal Raman microscope is used to study the protein distribution inside biological cells. It is shown that high quality Raman imaging of the protein distribution can be obtained using confocal nonresonant Raman imaging (λexc = 647.1 nm). The results are shown for two different human cell types. Perpheral blood lymphocytes are used as an example of the fully maturated cells with a low level of nuclear transcription. Human eye lens epithelial cells are used as an example of cells with a high level of nuclear activity. The protein distribution in both cell types is completely different. The nuclear distribution of the protein largely varies in the peripheral blood lymphocyte cells, while proteins are more homogenously distributed over the nuclear space in the eye lens epithelial cells. The imaging time is ∼20 min for a field of view of 10 × 10 μm2. The size of the sampling volume is 1.4 fL using a full width at half-maximum criterion along the z axis and a 1/e2 criterion in the xy plane. The results presented here indicate that Raman imaging is particularly of interest in the study of cellular processes, like phagocytosis, apoptosis, chromatin compaction, and cellular differentiation, which are accompanied by relatively large-scale redistributions of the materials. © 2002 Wiley Periodicals, Inc. Biopolymers (Biospectroscopy) 72: 1–9, 2003Keywords
This publication has 23 references indexed in Scilit:
- Spatially resolved IR microspectroscopy of single cellsBiopolymers, 2002
- Morphological Observation on Cell Death and Phagocytosis Induced by Ultraviolet Irradiation in a Cultured Human Lens Epithelial Cell LineExperimental Eye Research, 2000
- Confocal Raman Microspectroscopy and Imaging Study of Theraphthal in Living Cancer CellsBiophysical Journal, 2000
- Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman ScatteringPhysical Review Letters, 1999
- Confocal Direct Imaging Raman Microscope: Design and Applications in BiologyApplied Spectroscopy, 1998
- Axial resolution of confocal Raman microscopes: Gaussian beam theory and practiceJournal of Microscopy, 1997
- Comparison of recombination in vitro and in E. coli cells: Measure of the effective concentr ation of DNA in vivoCell, 1995
- Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopyCytometry, 1993
- Secondary Structure of Histones and DNA in ChromatinScience, 1977