Variability of human rRNA genes: inheritance and nonrandom chromosomal distribution of structural variants of nontranscribed spacer sequences

Abstract
Human rRNA genes contain variable regions, one of which is located in nontranscribed spacers (NTSs) closely downstream from the 3′-end of the transcribed region. This polymorphism may be detected by means of blot hybridization analysis as a set of distinct restriction fragments corresponding to this part of the rRNA genes. We have analyzed DNA of 51 individuals and found eight structural NTS variants of this region; two of these were common to all individuals analyzed, and six others were found in different combinations and with different frequencies. The copy number of each variant also differed but was not less than 10–20 copies per cell. The analysis of DNA isolated from leukocytes of the members of 11 families indicated that some of the structural variants (of the NTS region) are inherited as a single Mendelian locus. We propose that rRNA genes that belong to one particular structural variant form clusters on separate chromosomes. To test this proposition, we developed a combined method, including AgNO3-staining of chromosomes, in situ hybridization, and DNA analysis with methylation-sensitive restrictases, and used it for study of persons who had methylated rRNA genes located on AgNO3-negative nucleolar organizers. It was found that in three of four cases methylated genes really belonged to one structural variant. This approach may be used for detailed localization of separate classes of NTS structural variants of human rRNA genes.