RAD001 (Everolimus) Delays Tumor Onset and Progression in a Transgenic Mouse Model of Ovarian Cancer
Open Access
- 15 March 2007
- journal article
- Published by American Association for Cancer Research (AACR) in Cancer Research
- Vol. 67 (6), 2408-2413
- https://doi.org/10.1158/0008-5472.can-06-4490
Abstract
The mammalian target of rapamycin (mTOR) is thought to play a critical role in regulating cell growth, cell cycle progression, and tumorigenesis. Because the AKT-mTOR pathway is frequently hyperactivated in ovarian cancer, we hypothesized that the mTOR inhibitor RAD001 (Everolimus) would inhibit ovarian tumorigenesis in transgenic mice that spontaneously develop ovarian carcinomas. We used TgMISIIR-TAg transgenic mice, which develop bilateral ovarian serous adenocarcinomas accompanied by ascites and peritoneal dissemination. Fifty-eight female TgMISIIR-TAg mice were treated with 5 mg/kg RAD001 or placebo twice weekly from 5 to 20 weeks of age. To monitor tumor development, mice were examined biweekly using magnetic resonance microimaging. In vivo effects of RAD001 on Akt-mTOR signaling, tumor cell proliferation, and blood vessel area were analyzed by immunohistochemistry and Western blot analysis. RAD001 treatment markedly delayed tumor development. Tumor burden was reduced by ∼84%. In addition, ascites formation, together with peritoneal dissemination, was detected in only 21% of RAD001-treated mice compared with 74% in placebo-treated animals. Approximately 30% of RAD001-treated mice developed early ovarian carcinoma confined within the ovary, whereas all placebo-treated mice developed advanced ovarian carcinoma. Treatment with RAD001 diminished the expression of vascular endothelial growth factor in tumor-derived cell lines and inhibited angiogenesis in vivo. RAD001 also attenuated the expression of matrix metalloproteinase-2 and inhibited the invasiveness of tumor-derived cells. Taken together, these preclinical findings suggest that mTOR inhibition, alone or in combination with other molecularly targeted drugs, could represent a promising chemopreventive strategy in women at high familial risk of ovarian cancer. [Cancer Res 2007;67(6):2408–13]Keywords
All Related Versions
This publication has 17 references indexed in Scilit:
- mTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates AktCancer Research, 2006
- p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy‐induced apoptosisInternational Journal of Cancer, 2006
- Involvement of PP2A in viral and cellular transformationOncogene, 2005
- Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cellsOncogene, 2005
- Cancer Statistics, 2005CA: A Cancer Journal for Clinicians, 2005
- Vascular Endothelial Growth Factor Transcriptional Activation Is Mediated by Hypoxia-inducible Factor 1α, HDM2, and p70S6K1 in Response to Phosphatidylinositol 3-Kinase/AKT SignalingJournal of Biological Chemistry, 2004
- Inhibition of NFκB Increases the Efficacy of Cisplatin in in Vitro and in Vivo Ovarian Cancer ModelsJournal of Biological Chemistry, 2004
- Prognostic significance of stromal metalloproteinase-2 in ovarian adenocarcinoma and its relation to carcinoma progressionGynecologic Oncology, 2004
- Induction of ovarian cancer by defined multiple genetic changes in a mouse model systemCancer Cell, 2002
- Ovarian cancer screening: are we making any progress?Current Opinion in Oncology, 2001