Abstract
We describe new techniques to detect and analyze periodic motion as seen from both a static and a moving camera. By tracking objects of interest, we compute an object's self-similarity as it evolves in time. For periodic motion, the self-similarity measure is also periodic and we apply time-frequency analysis to detect and characterize the periodic motion. The periodicity is also analyzed robustly using the 2D lattice structures inherent in similarity matrices. A real-time system has been implemented to track and classify objects using periodicity. Examples of object classification (people, running dogs, vehicles), person counting, and nonstationary periodicity are provided.

This publication has 27 references indexed in Scilit: