The influence of a strong infrared radiation field on the conductance properties of doped semiconductors

Abstract
This work presents an analytic angular differential cross section formula for the electromagnetic radiation field-assisted electron scattering on impurities in semiconductors. These impurities are approximated with various model potentials. The scattered electrons are described with the well-known Volkov wave function, which has been used to describe strong laser field matter interaction for more than half a century, which exactly describes the interaction of the electron with the external oscillating field. These calculations show that the electron conductance in a semiconductor could be enhanced by an order of magnitude if an infrared electromagnetic field is present with 1011 W/cm2 < I < 1013 W/cm2 intensity.