Specific Activity of Brain Palmitoyl‐CoA Pool Provides Rates of Incorporation of Palmitate in Brain Phospholipids in Awake Rats

Abstract
In vivo rates of palmitate incorporation into brain phospholipids were measured in awake rats following programmed intravenous infusion of unesterified [9,10-3H]palmitate to maintain constant plasma specific activity. Animals were killed after 2-10 min of infusion by microwave irradiation and analyzed for tracer distribution in brain phospholipid and phospholipid precursor, i.e., brain unesterified palmitate and palmitoyl-CoA, pools. [9,10-3H]Palmitate incorporation into brain phospholipids was linear with time and rapid, with > 50% of brain tracer in choline-containing glycerophospholipids at 2 min of infusion. However, tracer specific activity in brain phospholipid precursor pools was low and averaged only 1.6-1.8% of plasma unesterified palmitate specific activity. Correction for brain palmitoyl-CoA specific activity increased the calculated rate of palmitate incorporation into brain phospholipids (0.52 nmol/s/g) by approximately 60-fold. The results suggest that palmitate incorporation and turnover in brain phospholipids are far more rapid than generally assumed and that this rapid turnover dilutes tracer specific activity in brain palmitoyl-CoA pool owing to release and recycling of unlabeled fatty acid from phospholipid breakdown.