Overcharging of Nanoparticles in Electrolyte Solutions

Abstract
Monte Carlo simulations are performed to investigate the effects of salt concentration, valence and size of small ions, surface charge density, and Bjerrum length on the overcharging of isolated spherical nanoparticles within the framework of a primitive model. It is found that charge inversion is most probable in solutions containing multivalent counterions at high salt concentrations. The maximum strength of overcharging occurs near the nanoparticle surface where counterions and coions have identical local concentrations. The simulation results also suggest that both counterion size and electrostatic correlations play major roles for the occurrence of overcharging.