Abstract
In order to define spinor fields on a space‐time M, it is necessary first to endow M with some further structure in addition to its Lorentz metric. This is the spinor structure. The definition and the elementary implications of the existence of a spinor structure are discussed. It is proved that a necessary and sufficient condition for a noncompact space‐time M to admit a spinor structure is that M have a global field of orthonormal tetrads.