Comparison of four neural net learning methods for dynamic system identification

Abstract
Four types of neural net learning rules are discussed for dynamic system identification. It is shown that the feedforward network (FFN) pattern learning rule is a first-order approximation of the FFN-batch learning rule. As a result, pattern learning is valid for nonlinear activation networks provided the learning rate is small. For recurrent types of networks (RecNs), RecN-pattern learning is different from RecN-batch learning. However, the difference can be controlled by using small learning rates. While RecN-batch learning is strict in a mathematical sense, RecN-pattern learning is simple to implement and can be implemented in a real-time manner. Simulation results agree very well with the theorems derived. It is shown by simulation that for system identification problems, recurrent networks are less sensitive to noise