Biomechanical Stability of Single-screw Versus Two-screw Fixation of an Unstable Slipped Capital Femoral Epiphysis Model

Abstract
To biomechanically evaluate single screw and varying 2 screw fixations for an unstable slipped capital femoral epiphysis (SCFE) model using physiologically relevant loading. In vitro biomechanical study. Twenty-four immature porcine proximal femurs were prepared to simulate a mild-to-moderate unstable SCFE. The femurs were randomized into 4 fixation groups: single screw, 2 screws horizontally placed, 2 screws vertically placed, and 2 oblique screws. Biomechanical testing determined maximum load to failure (N), load (N) at 2, 4, 6, and 8 mm of femoral head displacement, and stiffness (newtons per millimeter) for each group. No significant differences were found among the 3 different 2 screw configurations. The 2 screw constructs were 66% stiffer and 66% stronger than the single screw construct. In addition, whereas there was no difference at 2 mm of femoral head displacement, each subsequent displacement (4, 6, and 8 mm) demonstrated significantly higher failure loads when 2 screws were used for stabilization. Slipped capital femoral epiphysis stabilization with 2 screws leads to increased stability over single screw fixation; however, none of the 3 configurations/placement patterns of the 2 screw constructs seemed to be superior in fixation stability. These data support the use of a 2 screw construct in acute/unstable SCFE fixation. The biomechanical benefit of 2 screws needs to be considered in the face of greater potential for inadvertent penetration into the joint with an increased number of screws.