The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product.

Abstract
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a 15-kDa virion-associated protein that functions as a regulator of cellular processes linked to the HIV life cycle. We report the interaction of a 41-kDa cytosolic viral protein R interacting protein 1 (Rip-1) with Vpr in vitro. Rip-1 displays a wide tissue distribution, including relevant targets of HIV infection. Vpr protein induced nuclear translocation of Rip-1, as did glucocorticoid receptor (GR)-II-stimulating steroids. Importantly, Vpr and Rip-1 coimmunoprecipitated with the human GR as part of an activated receptor complex. Vpr complementation of a vpr mutant virus was also mimicked by GR-II-stimulating steroids. Vpr and GR-II actions were inhibited by mifepristone, a GR-II pathway inhibitor. Together these data directly link the activity of the vpr gene product to the glucocorticoid steroid pathway and provide a biochemical mechanism for the cellular and viral activity of Vpr, as well as suggest that a unique class of antivirals, which includes mifepristone (RU486), may influence HIV-1 replication.