Early Elevation of Cochlear Reactive Oxygen Species following Noise Exposure
- 23 July 1999
- journal article
- Published by S. Karger AG in Audiology and Neurotology
- Vol. 4 (5), 229-236
- https://doi.org/10.1159/000013846
Abstract
Reactive oxygen species (ROS) have been implicated in a growing number of neurological disease states, from acute traumatic injury to neurodegenerative conditions such as Alzheimer's disease. Considerable evidence suggests that ROS also mediate ototoxicant- and noise-induced cochlear injury, although most of this evidence is indirect. To obtain real-time assessment of noise-induced cochlear ROS production in vivo, we adapted a technique which uses the oxidation of salicylate to 2,3-dihydroxybenzoic acid as a probe for the generation of hydroxyl radical. In a companion paper we described the development and characterization of this method in cochlear ischemia-reperfusion. In the present paper we use this method to demonstrate early elevations in ROS production following acute noise exposure. C57BL/6J mice were exposed for 1 h to intense broad-band noise sufficient to cause permanent threshold shift (PTS), as verified by auditory brainstem responses. Comparison of noise-exposed animals with unexposed controls indicated that ROS levels increase nearly 4-fold in the period 1-2 h following exposure and do not decline over that time. Our ROS measures extend previous results indicating that noise-induced PTS is associated with elevated cochlear ROS production and ROS-mediated injury. Persistent cochlear ROS elevation following noise exposure suggests a sustained process of oxidative stress which might be amenable to intervention with chronic antioxidant therapy.Keywords
This publication has 12 references indexed in Scilit:
- Elevation of Reactive Oxygen Species following Ischemia-Reperfusion in Mouse Cochlea Observed in vivoAudiology and Neurotology, 1999
- Early Elevation of Cochlear Reactive Oxygen Species following Noise ExposureAudiology and Neurotology, 1999
- Reactive oxygen species in chick hair cells after gentamicin exposure in vitroHearing Research, 1997
- Differential cellular distribution of glutathione – an endogenous antioxidant – in the guinea pig inner earBrain Research, 1996
- Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explantsHearing Research, 1996
- MK-801 Protects against Carbon Monoxide-Induced Hearing LossToxicology and Applied Pharmacology, 1995
- Lipid peroxidation inhibitor attenuates noise-induced temporary threshold shiftsHearing Research, 1994
- Height changes in the organ of Corti after noise exposureHearing Research, 1992
- The quantitative relation between sensory cell loss and hearing thresholdsHearing Research, 1989
- Oxygen free radical involvement in ischemia and reperfusion injury to brainNeuroscience Letters, 1988