In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway

Abstract
SUMMARY: Saccharomyces cerevisiae mutants defective in the structural gene PGI1 lack phosphoglucose isomerase and hence cannot grow on glucose. Spontaneous mutants were isolated by selecting for the regained ability to grow on YEPD (yeast extract/peptone/glucose). Three complementation groups called spg29-31 (suppressor of pgi1δ) were identified. The metabolism of [2-13C]glucose was studied by 13C NMR spectroscopy. This led to the conclusion that in a spg29 mutant suppression of the glycolytic defect was achieved by increased carbon flux through the hexose monophosphate pathway. The specific activities of enzymes of the hexose monophosphate pathway (except glucose-6-phosphate dehydrogenase) and NAD- and NADP-dependent glutamate dehydrogenase were increased in the bypass mutant.