On different finite element methods for approximating the gradient of the solution to the helmholtz equation
- 17 February 1984
- journal article
- Published by Elsevier in Computer Methods in Applied Mechanics and Engineering
- Vol. 42 (2), 131-148
- https://doi.org/10.1016/0045-7825(84)90022-7
Abstract
No abstract availableThis publication has 13 references indexed in Scilit:
- On finite element approximation of the gradient for solution of Poisson equationNumerische Mathematik, 1981
- On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problemAnnales Academiae Scientiarum Fennicae. Series A. I. Mathematica, 1981
- On the finite element method for time-harmonic acoustic boundary value problemsComputers & Mathematics with Applications, 1981
- On the finite element approximation for maxwell’s problem in polynomial domains of the planeApplicable Analysis, 1981
- Regularity theorems for Maxwell's equationsMathematical Methods in the Applied Sciences, 1981
- On the Numerical Solutions of Helmholtz’s Equation by the Finite Element MethodSIAM Journal on Numerical Analysis, 1980
- Über die approximation der lösungen der maxwellschen randwertaufgabe mit der methode der finiten elementeApplicable Analysis, 1980
- Error estimates for the finite element approximation to a maxwell-type boundary value problemNumerical Functional Analysis and Optimization, 1980
- On finite element methods of the least squares typeComputers & Mathematics with Applications, 1979
- Convergence of the Finite Element Method Applied to the Eigenvalue Problem $Δu + λu = 0$Publications of the Research Institute for Mathematical Sciences, 1977