Abstract
When roots of Lepidium sativum L. are immersed in a colchicine solution (10-4 mol l-1), the cortical microtubules of statocytes are affected such that the dense network ofmicrotubules at the distal cell edges, between the endoplasmic reticulum and the plasma membrane, disappears almost completely, whereas the microtubules, lining the anticlinal cell walls are reduced only to a limited extent. Upon inversion of colchicine-pretreated roots, the distal complex of endoplasmic reticulum sinks into the interior of the statocyte. Germination of seeds in the cold (3–4°C) leads to a retardation of statocyte development; the elaborated system of endoplasmic reticulum is lacking, and only a few microtubules are observable, lining the plasma membrane along the anticlinal cell walls. During an additional 4 h at 24°C, groups of microtubules develop near the plasma membrane in the distal one-third of the statocytes, coaligning with newly synthesized cisternae of the endoplasmic reticulum. It is proposed that, particularly at the distal statocyte pole, microtubules in coordination with cross-bridging structures, act in stabilizing the polar arrangement of the distal endoplasmic reticulum and, in turn, facilitate an integrated function of amyloplasts, endoplasmic reticulum and plasma membrane in graviperception.