CT scanning in spiral geometry is achieved by continuously transporting the patient through the gantry in synchrony with continuous data acquisition over a multitude of 360-deg scans. Data for reconstruction of images in planar geometry are estimated from the spiral data by interpolation. The influence of spiral scanning on image quality is investigated. Most of the standard physical performance parameters, e.g., spatial resolution, image uniformity, and contrast, are not affected; results differ for pixel noise and slice sensitivity profiles. For linear interpolation, pixel noise is expected to be reduced by a factor of 0.82; reduction factors of 0.81 to 0.83 were measured. Slice sensitivity profiles are changed as a function of table feed d, measured in millimeters per 360-deg scan; they are smoothed as the original profile is convolved with the object motion function. The motion function is derived for linear interpolation that constitutes a triangle with a base line width of 2d and a maximal height equal to 1/d. Calculations of both the full width at half-maximum and the shape of the profiles were in good agreement with experimental results. The effect of the widened profiles, in particular of their extended tail ends, on image quality is demonstrated in phantom measurements.