Effects of FK-506 on Contraction and Ca 2+ Transients in Rat Cardiac Myocytes
- 1 December 1996
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 79 (6), 1110-1121
- https://doi.org/10.1161/01.res.79.6.1110
Abstract
FK-506 binding protein (FKBP) has been reported to be closely associated with the ryanodine receptor in skeletal and cardiac muscle and to modulate sarcoplasmic reticulum (SR) Ca2+ release channel gating in isolated channels. FK-506 can inhibit the activity of FKBP, thereby reversing its effects on SR Ca2+ release. We investigated the function of FKBP during normal contractions and Ca2+ transients in intact rat ventricular myocytes loaded with fluorescent Ca2+ indicators. FK-506 significantly increased steady state twitch Ca2+ transients and contraction amplitudes even under conditions in which the SR Ca2+ load and Ca2+ current were unaltered, suggesting that FK-506 increases the fraction of SR Ca2+ released during excitation-contraction (E-C) coupling. Action potentials were somewhat prolonged, consistent with the larger Ca2+ transients causing greater inward Na+-Ca2+ exchange current. FK-506 did not affect SR Ca2+ uptake but modestly decreased Ca2+ extrusion via Na+-Ca2+ exchange in intact cells (although no effect on Na+-Ca2+ exchange was seen in sarcolemmal vesicles). In most cells, FK-506 caused an increase in SR Ca2+ content during steady state stimulation, as assessed by caffeine-induced contractures. This was probably due to the inhibition of Ca2+ efflux via Na+-Ca2+ exchange. FK-506 also accelerated the rest decay of SR Ca2+ content and increased the frequency of resting Ca2+ sparks about fourfold. The increase in frequency of these basic Ca2+ release events was not associated with changes in the amplitude or duration of the Ca2+ sparks. We conclude that FK-506 increases the fraction of SR Ca2+ released during normal twitches and enhances the rate of SR Ca2+ release during rest. FK-506 also inhibits Na+-Ca2+ exchange, although this effect may be indirect. These effects are consistent with an important SR-stabilizing effect of FKBP in intact rat ventricular myocytes.Keywords
This publication has 38 references indexed in Scilit:
- Imaging Elementary Events of Calcium Release in Skeletal Muscle CellsScience, 1995
- Local calcium transients triggered by single L-type calcium channel currents in cardiac cellsScience, 1995
- Na-Ca Exchange is Required for Rest-decay but not for Rest-potential of Twitches in Rabbit and Rat Ventricular MyocytesJournal of Molecular and Cellular Cardiology, 1994
- Single channel activity of the ryanodine receptor calcium release channel is modulated by FK‐506FEBS Letters, 1994
- Evidence that the inhibition of Na+/K+-ATPase activity by FK506 involves calcineurinKidney International, 1994
- The Ryanodine Receptor from Canine Heart Sarcoplasmic Reticulum Is Associated with a Novel FK-506 Binding ProteinBiochemical and Biophysical Research Communications, 1994
- Calcium Sparks: Elementary Events Underlying Excitation-Contraction Coupling in Heart MuscleScience, 1993
- The mechanism of action of cyclosporin A and FK506Immunology Today, 1992
- Sodium Current-Induced Release of Calcium from Cardiac Sarcoplasmic ReticulumScience, 1990
- A receptor for the immuno-suppressant FK506 is a cis–trans peptidyl-prolyl isomeraseNature, 1989