Abstract
Gallotannin, consisting mainly of low molecular weight esters such as penta- and hexagalloylglucoses (commercially available as tannic acid produced from Turkish nutgall), can be used for increasing and diversifying tissue contrast in electron microscopy. When applied on tissue specimens previously fixed by conventional methods (aldehydes and OsO4), the low molecular weight galloylglucoses (LMGG) penetrate satisfactorily the cells and induce general high contrast with fine delineation of extra- and intracellular structures, especially membranes. In some features, additional details of their intimate configuration are revealed. Various experimental conditions tested indicate that the LMGG display a complex effect on fixed tissues: they act primarily as a mordant between osmium-treated structures and lead, and concomitantly stabilize some tissue components against extraction incurred during dehydration and subsequent processing. Experiments with aldehyde blocking reagents (sodium borohydride and glycine) suggested that the LMGG mordanting effect is not dependent on residual aldehydes groups in tissues.