Temperature and velocity field regimes of convective motions in a rotating plane fluid layer

Abstract
The paper is a continuation of work published in Boubnov & Golitsyn (1986). We present new measurements of the temperature and velocity field patterns and their statistical characteristics. This allows us to classify regimes of convection in a plane rotating horizontal fluid layer in terms of Rayleigh and Taylor numbers. Within the irregular regimes geostrophic convection is found for which the Rossby number is much less than unity.In the regular regimes the mean temperature profiles are linear with height in the bulk of the fluid, the gradient being dependent mainly on rotation rate Ω and fluid depth h. These together with some dimensional arguments lead to the heat transfer relationship Nu ∝ Ra3 Ta−2 between Nusselt, Rayleigh and Taylor numbers. Experimental results by Rossby (1969) and theoretical work by Chan (1974) and Riahi (1977) suggested this dependence. The dependence on ωτ of the temperature power spectrum normalized by the variance was found to be universal at higher frequencies for all irregular convective motions, where τ is the timescale of the thermal boundary layer for cases with a small influence of rotation and with τ about three times larger (in numerical coefficient) for geostrophic convection. For irregular geostrophic regimes it is found that the temperature variance depends on rotation rate and heat flux, and is inversely proportional to the buoyancy parameter.Horizontal and vertical components of the velocity fields were measured for regular as well as irregular regimes, confirming, especially for geostrophic convection, the theoretical results by Golitsyn (1980). In conclusion some geophysical applications are briefly mentioned.