Three-dimensional blood flow analysis in a wide-necked internal carotid artery—ophthalmic artery aneurysm
- 1 September 2003
- journal article
- Published by Journal of Neurosurgery Publishing Group (JNSPG) in Journal of Neurosurgery
- Vol. 99 (3), 526-533
- https://doi.org/10.3171/jns.2003.99.3.0526
Abstract
The aim of this study was to evaluate axial and secondary flow structures in a wide-necked internal carotid artery-ophthalmic artery aneurysm, one of the most common locations for endovascular coil placement. A clear acrylic aneurysm model was manufactured from a three-dimensional computerized tomography angiogram. Intraaneurysm blood flow analysis was conducted using an acrylic aneurysm model together with laser Doppler velocimetry and particle imaging velocimetry. The maximal axial blood flow velocities in the inflow and outflow zones at the aneurysm orifice were noted at the peak systolic phase, measuring 46.8 and 24.9% of that in the parent artery, respectively. The mean size of the inflow zone during one cardiac cycle was 44.3 +/- 9.8% (range 35.6-58.7%) the size of the axial section at the aneurysm orifice. In the lower and upper planes of the aneurysm dome, the mean size of inward and outward flow areas were 43.3 +/- 6.7% and 43.8 +/- 6.8% the size of the axial cross-sectional plane, respectively. The axial flow velocity structures were dynamically altered throughout the cardiac cycle, particularly at the aneurysm orifice. The fastest secondary flow at the opening was also noted at the peak systolic and early diastolic phases. Axial blood flow velocity was slower in the upper axial plane of the aneurysm dome than in the lower one. Conversely, the secondary flow component was faster in the upper plane. The side-wall aneurysm in this study did not demonstrate a simple flow pattern as was previously seen in ideally shaped experimental aneurysms in vitro and in vivo. The flow patterns of inflow and outflow zones were very difficult to predict based on the limited flow information provided on standard digital subtraction angiography, even in an aneurysm with a relatively simple dome shape.Keywords
This publication has 20 references indexed in Scilit:
- Guglielmi Detachable Coil embolization of cerebral aneurysms: 11 years' experienceJournal of Neurosurgery, 2003
- Biosimulation and VisualizationAnnals of the New York Academy of Sciences, 2002
- International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trialThe Lancet, 2002
- Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a moldJournal of Neurosurgery, 2001
- Endovascular Treatment of Basilar Tip Aneurysms Using Guglielmi Detachable Coils: Anatomic and Clinical Outcomes in 73 Patients from a Single InstitutionNeurosurgery, 2000
- Natural history of the neck remnant of a cerebral aneurysm treated with the Guglielmi detachable coil systemJournal of Neurosurgery, 2000
- Aspects of Fluid Dynamics Applied to the Larger ArteriesJournal of Theoretical Biology, 1999
- Technical Report Computer simulation helps predict cerebral aneurysmsJournal of Medical Engineering & Technology, 1998
- Computer Modeling of Intracranial Saccular and Lateral Aneurysms for the Study of Their HemodynamicsNeurosurgery, 1995
- Enlargement of basilar artery aneurysms following balloon occlusion — “water-hammer effect”Journal of Neurosurgery, 1991