Estrogen-induced endogenous DNA adduction: possible mechanism of hormonal cancer.

Abstract
In animals and humans, estrogens are able to induce cancer in susceptible target organs, but the mechanism(s) of estrogen-induced carcinogenesis has not been elucidated. A well-known animal model is the development of renal carcinoma in estrogen-treated Syrian hamsters. Previous work demonstrated the presence of covalent DNA addition products (adducts) in premalignant kidneys of hamsters exposed to the synthetic estrogen, diethylstilbestrol, a known human carcinogen. In the present study, the natural hormone, 17.beta.-estradiol, and several synthetic steroid and stilbene estrogens were examined by a 32P-postlabeling assay for their capacity to cause covalent DNA alterations in hamster kidney. Chronic exposure to each of the estrogens tested led to the gradual formation of five chromatographically distinct unusual nucleotides specifically in kidney DNA. Irrespective of the estrogen used, chromatograms exhibited identical mobilities of each of these adducts in seven different systems on PEI-cellulose anion-exchange TLC, in three different conditions on reversed-phase TLC, and in one system on silica gel partition TLC. Therefore, the DNA adducts observed did not contain moieties derived from the structurally diverse estrogens. It is concluded that each of the estrogens induced the binding of the same unknown endogenous compound (or compounds) to target tissue DNA. This novel property of estrogens is postulated to play a key role in hormone-induced malignancy.

This publication has 30 references indexed in Scilit: