Abstract
Similarities in DNA base sequence indicate that pSC101 and R1162 encode related systems for conjugal mobilization, although these plasmids are otherwise very different. The mob region of pSC101 was cloned, and two genes that are required for transfer were identified. One gene, mobA , encodes a protein similar in amino acid sequence to the DNA processing domain of the R1162 MobA protein. The other gene, mobX , is within the same transcriptional unit as the pSC101 mobA and is located just downstream, at the same position occupied by mobB in R1162. Despite this, the MobB and MobX proteins do not appear to be closely related based on a comparison of their amino acid sequences. Complementation analysis indicated that neither of the pSC101 Mob proteins could substitute for, or be replaced by, their R1162 counterparts, nor were they active together at the R1162 origin of transfer ( oriT ). However, the full set of R1162 Mob proteins did recognize the pSC101 oriT . A hybrid system for mobilization, active at the R1162 oriT site, was constructed. This system consists of MobX and a chimeric protein made up of the DNA cleaving-ligating domain of the R1162 MobA protein joined to a fragment of pSC101 MobA. Previous results suggested that MobB and a region of MobA distinct from the DNA processing domain together formed a functional unit in transfer. The present results support this model because the chimeric MobA, although active on R1162 oriT , requires the pSC101 protein MobX for efficient plasmid mobilization.