Unfilled nuclear oestrogen receptors in the rat brain and pituitary gland

Abstract
This study describes the presence of a population of oestrogen receptors in cell nuclei from the pituitary gland and brain of untreated and oestradiol-treated ovariectomized rats. The receptors behaved as if they were not occupied by oestradiol. These 'unfilled' oestrogen receptors could be distinguished from occupied nuclear receptor sites on the basis of their ability to bind [3H]oestradiol at low temperatures (0–4 °C). Occupied receptors bound labelled [3H]oestradiol only under exchange conditions at an increased temperature (25 °C). Unfilled and occupied nuclear receptors were physicochemically similar in terms of sedimentation coefficients in sucrose density gradients containing 0·4 m-KC1 (4–5S), equilibrium dissociation constants for reaction with [3H]oestradiol (0·2–0·6 nmol/l) and ligand specificity. In ovariectomized rats, unfilled receptors constituted more than 75 % of the total nuclear receptor population. One hour after i.v. treatment with oestradiol (3·6 μg/kg), both total and unfilled nuclear receptor concentrations increased and then subsequently declined over the next 12 h. The increase in unfilled sites was, however, proportionately less than that occurring in the filled component; at 1 h after oestradiol injection unfilled sites constituted less than 20% of the receptors present in brain and pituitary cell nuclei. The physiological significance of unfilled nuclear oestrogen receptors remains unknown. The observations that they exist in various oestrogen target tissues and that their levels are influenced by oestradiol treatment suggest a possible role for these receptors in the mechanism of oestrogen action.