Abstract
The velocity sensitivity of a resistance-wire temperature sensor is expressed in terms of sensor parameters, and the resulting errors in temperature derivative moments in isotropic turbulence are evaluated. It is shown that velocity sensitivity of a degree completely negligible for most purposes causes severe contamination of the measured third moment. The contamination terms are shown to be production rates of the mean square temperature gradient and vorticity, respectively, and therefore create positive values of measured derivative skewness. The dominant contamination term is related to the temperature spectrum through the balance equation for the mean-square temperature gradient, and calculations based on an assumed spectral form show that under typical conditions the measured skewness is large. This mechanism could provide an alternative to anisotropy as an explanation of the positive skewnesses recently measured in the atmosphere.

This publication has 1 reference indexed in Scilit: