Porous Carbon Powders Prepared by Ultrasonic Spray Pyrolysis

Abstract
New, thermally robust meso- and macroporous carbon powders were prepared by ultrasonic spray pyrolysis (USP) of aqueous solutions using an inexpensive high-frequency ultrasound generator from a household humidifier. We choose our molecular precursors rationally, so that the expected decomposition pathways produce only remnant carbon atoms. Specifically, our rational design criterion led to halo-organic carboxylate salts, whose pyrolysis yields well-defined carbon solids with a temporary template being generated in situ, simply an inorganic salt, which is easily dissolved during aqueous workup. The materials have been characterized by SEM, TEM, XRD, 13C NMR MAS, XPS, FTIR spectroscopy, and BET surface area measurements. Changing the alkali metal alters the morphology and pore structure of the final material, which can be explained in terms of the observed differences in the DSC and TGA of the various precursors. This preparatory method provides an extremely facile and versatile method for the generation of meso- and macroporous carbons.