A WIDEBAND E-SHAPED MICROSTRIP PATCH ANTENNA FOR 5 - 6 GHZ WIRELESS COMMUNICATIONS

Abstract
A wideband E-shaped microstrip patch antenna has been designed for high-speed wireless local area networks (IEEE 802.11a standard) and other wireless communication systems covering the 5.15-5.825 GHz frequency band. Two parallel slots are incorporated to perturb the surface current path, introducing local inductive effect that is responsible for the excitation of the second resonant mode. The length of the center arm can be trimmed to tune the frequency of the second resonant mode without affecting the fundamental resonant mode. A comprehensive parametric study has been carried out to understand the effects of various dimensional parameters and to optimize the performance of the antenna. A substrate of low dielectric constant is selected to obtain a compact radiating structure that meets the demanding bandwidth specification. The reflection coefficient at the input of the optimized E-shaped microstrip patch antenna is below -10 dB over the entire frequency band. The measurement results are in excellent agreement with the HFSS simulation results

This publication has 7 references indexed in Scilit: