Abstract
Hollow fiber ultrafiltration and microfiltration membranes are examined for the processing of isoelectric soya protein precipitate suspensions. A model based on the various resistances to permeate flux is used to describe membrane performance. The main resistance to permeate flux is due to the interaction between the active membrane and the soluble and precipitated protein; that is, as compared with resistances due to the active membrane itself or the membrane support structure, or arising from concentrated soluble or precipitated protein layers over the membrane surface. Soluble protein rejection and precipitate mean particle diameter are correlated with observed values of this main resistance. In contract to the ultrafiltration of soluble proteins, the flux rates observed when processing protein precipitate suspensions under a similar range of operating conditions do not approach a limiting value with increased transmembrane pressure. At high protein concentrations, greater flux rates may be achieved for precipitated as compared with soluble proteins. The use of a microfiltration membrane does not give further improvement in flux rate; this may be attributed to problems of pore fouling with precipitate particles.