Estrogen receptor β acts as a dominant regulator of estrogen signaling
- 12 October 2000
- journal article
- Published by Springer Nature in Oncogene
- Vol. 19 (43), 4970-4978
- https://doi.org/10.1038/sj.onc.1203828
Abstract
The physiological effects of estrogens are mediated by two intracellular transcription factors, the estrogen receptors (ERs), that regulate transcription of target genes through binding to specific DNA target sequences. Here we describe alterations in cellular responses to different ER agonists and to the anti-estrogenic compound tamoxifen resulting from co-expression of the two ERs in transient co-transfection experiments. Our results demonstrate that ERbeta can act as a negative or positive dominant regulator of ER activity. This is manifested through reduced transcriptional activity at low concentrations of estradiol (E2); increased antagonistic effects of tamoxifen on E2 stimulated activity; and enhanced agonistic action of the phytoestrogenic compound genistein. Furthermore, using chimeric proteins lacking the N-terminal activation function 1 (AF-1), we show that the differential responses of ERalpha and ERbeta to different agonists and antagonists are primarily dictated by inherent differences in the C-terminal ligand-binding domains of the receptors, whereas the magnitude of transcriptional activity is influenced by ERalpha AF-1, but not ERbeta AF-1. The ERalpha AF-1 activity appears to be modulated upon co-expression of both ERs. The alterations in transcriptional activity resulting from co-expression of ERalpha and ERbeta are probably due to the formation of alpha/beta heterodimeric complexes. This study demonstrates that co-localization and subsequent heterodimerization of ERalpha and ERbeta may result in receptor activity distinct from that of ER homodimers.Keywords
This publication has 38 references indexed in Scilit:
- Estrogen Receptors α and β Form Heterodimers on DNAJournal of Biological Chemistry, 1997
- Agonistic Effect of Tamoxifen Is Dependent on Cell Type, ERE-Promoter Context, and Estrogen Receptor Subtype: Functional Difference between Estrogen Receptors α and βBiochemical and Biophysical Research Communications, 1997
- DIETARY PHYTOESTROGENSAnnual Review of Nutrition, 1997
- Distribution of Estrogen Receptor-β-Like Immunoreactivity in Rat ForebrainNeuroendocrinology, 1997
- ERβ: Identification and characterization of a novel human estrogen receptorFEBS Letters, 1996
- Cloning of a novel receptor expressed in rat prostate and ovary.Proceedings of the National Academy of Sciences, 1996
- Control of Transcription by Steroid HormonesaAnnals of the New York Academy of Sciences, 1996
- The RXR heterodimers and orphan receptorsCell, 1995
- Nuclear Hormone Receptors Activate Direct, Inverted, and Everted RepeatsaAnnals of the New York Academy of Sciences, 1995
- Oestrogen receptor mRNA and a related RNA transcript in mouse ovariesJournal of Molecular Endocrinology, 1989