Effect of long-chain fatty acyl-CoA on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell

Abstract
The effect of long-chain acyl-CoA on subcellular adenine nucleotide systems was studied in the intact liver cell. Long-chain acyl-CoA content was varied by varying the nutritional state (fed and starved states) or by addition of oleate. Starvation led to an increase in the mitochondrial and a decrease in the cytosolic ATP/ADP ratio in liver both in vivo and in the isolated perfused organ as compared with the fed state. The changes were reversed on re-feeding glucose in liver in vivo or on infusion of substrates (glucose, glycerol) in the perfused liver, respectively. Similar changes in mitochondrial and cytosolic ATP/ADP ratios occurred on addition of oleate, but, importantly, not with a short-chain fatty acid such as octanoate. It is concluded that long-chain acyl-CoA exerts an inhibitory effect on mitochondrial adenine nucleotide translocation in the intact cell, as was previously postulated in the literature from data obtained with isolated mitochondria. The physiological relevance with respect to pyruvate metabolism, i.e. regulation of pyruvate carboxylase and pyruvate dehydrogenase by the mitochondrial ATP/ADP ratio, is discussed.