Tetracycline Analogs Affecting Binding to Tn10-Encoded Tet Repressor Trigger the Same Mechanism of Induction
- 1 January 1996
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 35 (23), 7439-7446
- https://doi.org/10.1021/bi952683e
Abstract
We examined the influence of substituents in tetracycline (tc) analogs modified at positions 2 and 4−9 and anhydrotetracycline (atc) on induction of the Tn10-encoded Tet repressor (TetR) by a quantitative in vitro induction assay. The equilibrium association constants of the modified tc to TetR were independently determined to distinguish effects on binding from those on induction. We found a correlation between the binding affinity and induction of TetR for most tc analogs. While a substitution at position 5 revealed only minor effects, changes at position 6 increased binding and induction efficiencies up to 20-fold. A chlorine at position 7 or 8 enhanced binding and induction about 4- and 9-fold, respectively. Substituents at position 9 decreased binding up to 5-fold. Epimerization of the dimethylamino function at position 4 in 4-epi-tc resulted in about 300-fold-reduced binding and 80-fold-reduced induction. Substitution of this grouping by hydrogen in 4-de(dimethylamino)-tc resulted in no binding and no induction. The respective atc analog failed to induce as well, although binding was still observed. The dimethylamino function may, thus, play a role in triggering the conformational change of TetR necessary for induction. Substitution of the 2-carboxamido by a nitrilo function did not influence binding and induction efficiencies. Atc showed about 30-fold increased binding and induction, being the most effective inducer tested in this study. The equilibrium association constants of most TetR−[Mg-tc]+ and TetR−([Mg-tc]+)2 analog complexes with tet operator are decreased about 102- and 108-fold, respectively, as compared to those of free TetR. This suggests that these tc analogs share the same molecular mechanism of TetR induction.Keywords
This publication has 8 references indexed in Scilit:
- The Complex Formed Between Tet Repressor and Tetracycline-Mg2|ihsbop|+Reveals Mechanism of Antibiotic ResistanceJournal of Molecular Biology, 1995
- An accurate method for determining the helical repeat of DNA in solution reveals differences to the crystal structures of two B-DNA decamersJournal of Molecular Biology, 1992
- Ligand-modulated binding of a gene regulatory protein to DNAJournal of Molecular Biology, 1989
- Tet repressor-tet operator contacts probed by operator DNA-modification interference studiesJournal of Molecular Biology, 1988
- Kinetic and equilibrium characterization of the Tet repressor-tetracycline complex by fluorescence measurementsJournal of Molecular Biology, 1986
- Control of expression of the Tn10-encoded tetracycline resistance genesJournal of Molecular Biology, 1983
- Heterogeneity of tetracycline resistance determinantsPlasmid, 1980
- THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONSAnnals of the New York Academy of Sciences, 1949