Association Between Brain Temperature and Dentate Field Potentials in Exploring and Swimming Rats

Abstract
Attempts to correlate behavioral learning with cellular changes, such as increased synaptic efficacy, have often relied on increased extracellular potentials as an index of enhanced synaptic strength. A recent example is the enlarged excitatory field potentials in the dentate gyrus of rats that are learning spatial relations by exploration. The altered hippocampal field potentials do not reflect learning-specific cellular changes but result from a concomitant rise in brain temperature that is caused by the associated muscular effort. Enhanced dentate field excitatory potentials followed both passive and active heating and were linearly related to the brain temperature. These temperature-related effects may mask any learning-induced changes in field potential.